gary1212のブログ : マレーシア、イポーでの生活。

滞在期間がマレーシア以外の時も 含んでいます。

マレーシア-イポー長期滞在生活での日常での出来事を書いてます。

ブログの目的は、もっぱら自分自身用の日記です。

不特定多数の方に情報を早く正確に伝達したい というつもりでは全く書いていません。

このためローカルの友人からもらった情報で、それが不確実な情報でも 私が関心を持ったものは 書いています。

繰り返しますが 読者のみなさんへの確実/正確/迅速な情報提供をしたい と思って書いているのではありません。

それじゃ困る と思う方は どうぞ 読まないでください。

よしなに。

dxやdyの本当の意味は?  置換積分  微分記号vs微分形式  全微分vs偏微分


例3:置換積分でdx/dt=g'(t)の時dx=g'(t)dtと変形してdxに代入する→合成関数の微分の両辺を積分すれば置換積分となる。 


f(x),x=g(t)とした時 ∫f(x)dx=∫f(g(t))g'(t)dtが成り立つ。 置換積分はこれを使っているとも見れる。


http://w3e.kanazawa-it.ac.jp/math/category/sekibun/henkan-tex.cgi?target=/math/category/sekibun/chikansekibun.html&list=1 


 わかりにくければ具体的に ∫(5x+2)²dx=∫t²×(1/5)dt=(5x+3)³/15などを考えればいい。


 t=5x+2でx=(t-2)/5=g(t)。dx/dt=g'(t)=1/5。 


1つ目の等号をt=5x+2としてdx=(1/5)dtから求めたと見るのが形式的な方法。 


∫f(x)dx=∫f'(g(t))g'(t)dtという公式を使ったと見るのが感覚的な方法。 ∫(5x+2)²dxにf(x)=x²,g(t)=5t+2として ∫f(x)dx=∫f(g(t))g'(t)dtという公式に当てはめた、という感じ。





【高校数学】置換積分の本質【数Ⅲ(積分法)】




////////
dxやdyの本当の意味は?



昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。


結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。


実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?


どなたかご教示いただけましたら幸いでございます。



::::::



数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。


dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。


さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。



y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)

と表される。


これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。


その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。


微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。


なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。




////////